Окружности
Если вписанный угол KML изображенный на рисунке, равен 38°, то вписанный угол KNL равен:
На рисунке изображены две окружности с центрами в точках A и B. Если MK = 48, то сумма радиусов этих двух окружностей равна:
Две окружности с центрами A и B касаются в точке M. Найдите длину отрезка CN, если
и диаметр большей окружности на 25 больше радиуса меньшей окружности.
Из точки А к окружности проведены касательные AB и АС и секущая AM, проходящая через центр окружности О. Точки В, С, M лежат на окружности (см. рис.). Найдите величину угла AOB, если
Если BC — диаметр, O — центр окружности, (см. рис.), то градусная мера вписанного угла BCA равна:
В окружность радиусом 6 вписан треугольник, длины двух сторон которого равны 6 и 10. Найдите длину высоты треугольника, проведенной к его третьей стороне.
Ответ:
Точки A, B, C разделили окружность так, что градусные меры дуг AB, BC, CA в указанном порядке находятся в отношении 5 : 7 : 6. Найдите градусную меру угла ABC.
Через точку А к окружности с центром в точке О проведены касательные АВ и АС, где В и С — точки касания. Найдите градусную меру угла ВАС, если
Из точки A к окружности с центром O проведены две касательные AB и AC, где B и C — точки касания. Через точки C и O проведена прямая, которая пересекает касательную AB в точке M (см. рис.). Найдите градусную меру угла 1, если ∠AMC = 44°.
Из точки A к окружности проведены касательные AB и AC и секущая AM, проходящая через центр окружности O. Точки B, С, M лежат на окружности (см. рис.). Известно, что BK = 4, AC = 9. Найдите длину отрезка AK.
В окружности радиуса 13 проведена хорда АВ. Точка М делит хорду AВ на отрезки длиной 10 и 12. Найдите расстояние от точки М до центра окружности.
Диаметр окружности пересекает хорду под углом 60° и точкой пересечения делит ее на отрезки длиной 2 и 12. Найдите квадрат радиуса окружности.
Площадь прямоугольного треугольника равна 2, а радиус описанной около него окружности равен R. Укажите номер формулы, которой может выражаться сумма катетов a и b.
На одной стороне прямого угла О отмечены две точки А и В так, что ОА = 1,7, OB = а, ОА < ОВ. Составьте формулу, по которой можно вычислить радиус r окружности, проходящей через точки А, В и касающейся другой стороны угла.
Окружность задана уравнением Для начала каждого из предложений
Начало предложения | Окончание предложения |
---|---|
А) Сумма координат центра данной окружности равна... Б) Площадь круга, ограниченного данной окружностью, если в качестве В) Расстояние от центра данной окружности до начала координат равно... | 1) 17 2) 21 3) 25 4) 28 5) 88 6) 44 7) 31 |
Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: А1Б1В4.
Ответ: